Soybean Symptomology and **Yield Response to Sub-Labeled Doses of 2,4-D and Dicamba as** Influenced by Varieties

Jesaelen G. Moraes*, Vitor M. Anunciato, Jeffrey A. Golus, Kasey P. Schroeder, and Greg R. Kruger *jesaelenmoraes@huskers.unl.edu

BACKGROUND

- Previous studies used old auxinic herbicide formulations¹⁻⁸
- Lowest herbicide dose 1/10,000x¹⁻⁸

OBJECTIVE & HYPOTHESES

- To investigate the symptomology and consequent impact on yield caused by soybean exposure to sub-labeled doses of 2,4-D and dicamba herbicides
- Varied response exists among soybean varieties
- Symptomology cannot accurately predict yield loss

MATERIALS & METHODS

- RCBD with 4 replications
- 3 Locations (Nebraska, USA)
- 7 Soybean varieties (Table 1)
- Herbicides: 2,4-D (1065 g ae ha^{-1}) and dicamba (560 g ae ha⁻¹)
- 5 sub-labeled doses: 1/10x, 1/100x, 1/1,000x, 1/10,000x, and 1/100,000x
- Plot sprayer with 10 independent spray booms (TTI11003)
- 140 L ha⁻¹; 276 kPa; 1.75 m s⁻¹
- Plants were treated at R1
- Plot size: 1.5-m x 9-m
- Statistical analysis: Data were subjected to ANOVA and dose-response curves were fitted to the data using the log-logistic function of the dr4pl package in R 3.4.2

REFERENCES

¹Al-Khatib et al. 1999, ²Auch and Arnold 1978, ³Behrens and Lueschen 1979; ⁴Cundiff et al. 2017; ⁵Egan and Mortensen 2012; ⁶Griffin et al. 2013, ⁷Scholtes et al. 2019, ⁸Soltani et al. 2016, ⁹Sholtes et al. 2019.

00 -

75.

50 ·

25 ·

100

75

(%

DA

28

nju

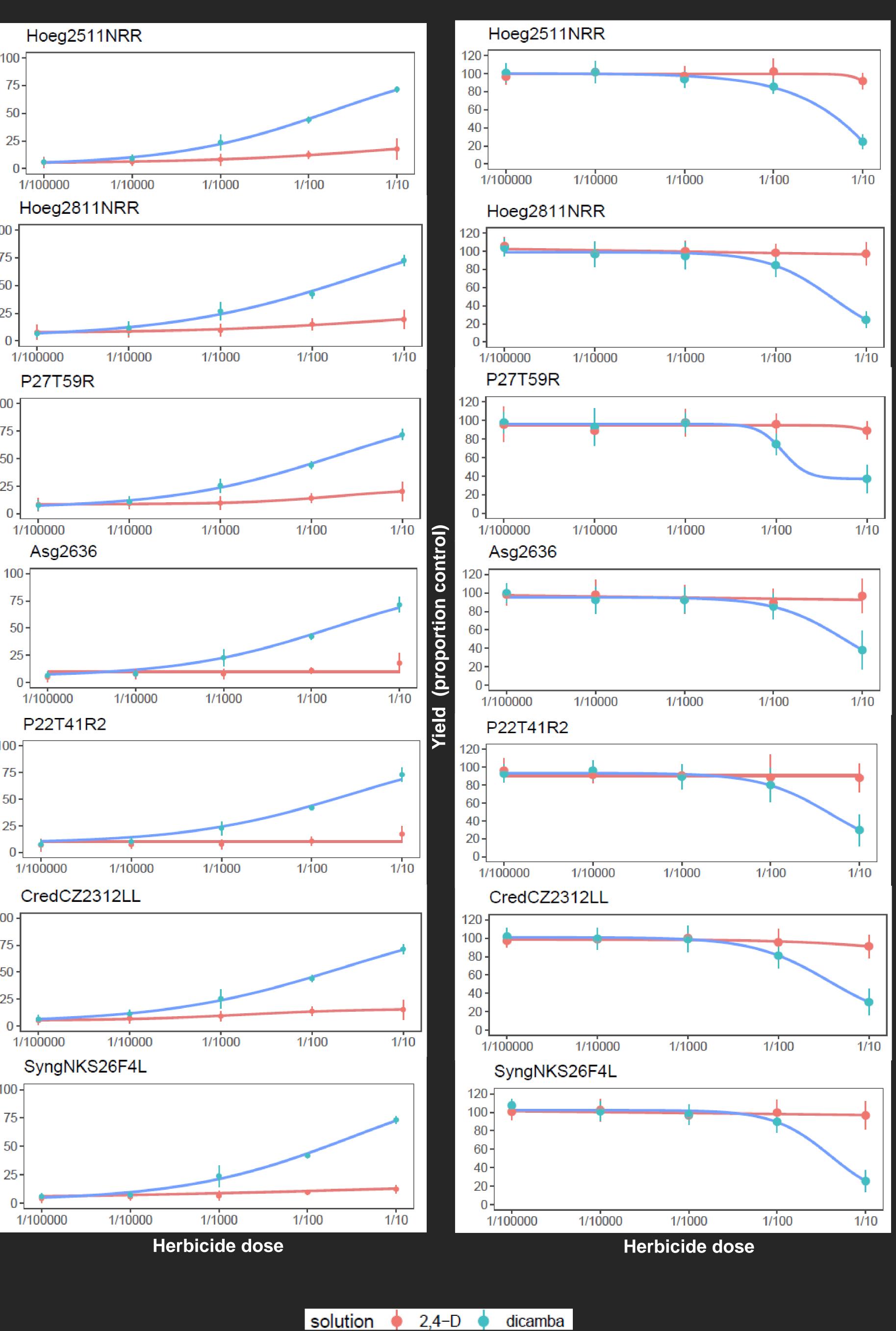
mation

50

25

75

<u>50</u> ·


25

75.

50

25-

RESULTS

Figure 1. Soybean symptomology at 28 days after exposure to sub-labeled doses of 2,4-D and dicamba herbicides at R1 as influenced by soybeans varieties.

Figure 2. Soybean yield after exposure to sublabeled doses of 2,4-D and dicamba herbicides at R1 as influenced by soybean varieties.

Table 1. Soybean varieties used in this
 research and their specifications

Code	Compa
Hoegemeyer 2511NRR	DuPont Pic
Hoegemeyer 2811NR	DuPont Pic
P27T59R	DuPont Pic
Asgrow2636	DEKALB (B
P22T41R2	DuPont Pic
CredZ2312LL	BASF
Syngenta26-F4L	Syngen

DISCUSSION & CONCLUSION

- Greater symptomology was observed when plants were exposed to dicamba than 2,4-D at higher doses (Figure 1)
- Same symptomology was observed when comparing both herbicides across doses up to 0.056 g ae ha⁻¹ (1/10,000x) (Figure 1)
- Differences in symptomology were observed between herbicides when using doses greater than 0.56 g ae ha⁻¹ (1/1,000x), differences in yield were observed only at the highest dose (56 g ae ha⁻¹) regardless of the soybean variety (Figure 2)
- At least half of the soybean varieties showed a slightly improvement on yield at the lowest doses, but results were herbicide-, dose- and variety-specific (Figure 2)
- Slight differences could be observed among soybean varieties but results within herbicide and dose were similar overall
- Symptomology must be carefully interpreted and may not be an accurate predictor for yield⁹

FUTURE RESEARCH

• Seeds harvested during 2019 and 2020 will be used in a greenhouse study in order to investigate potential visual estimation of injury in the next generation due to the herbicide exposure.

ny	Variety
oneer	R
oneer	R
oneer	R
Bayer)	RR2Y
oneer	RR2Y
:	LL
nta	LL